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Abstract

This paper re-examines a basic test case used for spherical shallow-water numerical models, and underscores the need
for accurate, high resolution models of atmospheric and ocean dynamics. The Rossby–Haurwitz test case, first proposed
by Williamson et al. [D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard test set for numer-
ical approximations to the shallow-water equations on the sphere, J. Comput. Phys. (1992) 221–224], has been examined
using a wide variety of shallow-water models in previous papers. Here, two contour-advective semi-Lagrangian (CASL)
models are considered, and results are compared with previous test results. We go further by modifying this test case in
a simple way to initiate a rapid breakdown of the basic wave state. This breakdown is accompanied by the formation
of sharp potential vorticity gradients (fronts), placing far greater demands on the numerics than the original test case does.
We also go further by examining other dynamical fields besides the height and potential vorticity, to assess how well the
models deal with gravity waves. Such waves are sensitive to the presence or not of sharp potential vorticity gradients, as
well as to numerical parameter settings. In particular, large time steps (convenient for semi-Lagrangian schemes) can seri-
ously affect gravity waves but can also have an adverse impact on the primary fields of height and velocity. These problems
are exacerbated by a poor resolution of potential vorticity gradients.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. The shallow-water model

The shallow-water equations (SWEs) describe the motion of a thin layer of fluid held down by gravity. They
have been widely used as a simple model of large-scale atmospheric and oceanic dynamics. They are capable of
describing diverse nonlinear fluid phenomena, including vortices and gravity waves, over a broad range of
spatial and temporal scales. Yet, this flexibility means that a comprehensive understanding of their solution
properties is difficult to achieve.
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Inevitably, studying complex flows such as the atmosphere and the oceans requires accurate numerical sim-
ulation. The SWEs are a convenient, relatively simple testbed for numerical methods. Many numerical issues
need to be considered, particularly when designing global methods in spherical geometry. It is fair to say, how-
ever, that most existing test cases only mildly challenge numerical methods, and certainly they hardly reflect
the true complexity of observed fluid flows.

Here, we revisit one of these test cases, proposed by Williamson et al. [21], but also consider a simple var-
iation of it which permits realistic flow complexity in a short integration time. This test case involves a
Rossby–Haurwitz wave, a steadily propagating global solution only in the barotropic limit (vanishing Froude
number). The original test exhibits nearly steady motion, but this breaks down into more turbulent behaviour
at late times as recently discovered by Thuburn and Li [20]. The variation considered here includes an initial
broad-scale perturbation which promotes a rapid break down. It proves significantly more challenging to
achieve numerical convergence for this more realistic flow.

1.2. Overview of the basic equations

The equations expressing momentum balance and mass continuity for an inviscid, adiabatic fluid are:
Du

Dt
þ 2X � u ¼ �rU ð1Þ

oU
ot

þ r � ðUuÞ ¼ 0 ð2Þ
(e.g. see [8,15] and references therein) where u is the layer mean horizontal velocity, U = gh is the geopotential,
proportional to the hydrostatic pressure, h is the local fluid height and X is the Earth’s rotation vector. In Eq.
(1), only components parallel to the Earth’s surface are retained. Taking (x,y,z) as local coordinates pointing
eastwards, northwards and upwards, respectively, the velocity u = (u,v) consists of just two components, u and
v, directed eastward and northward, respectively. On a sphere of radius a, dx = rdk and dy = ad/, where k
and / denote longitude and latitude, and r ” acos/ is the horizontal radius. Instead of using the two velocity
components u and v, many numerical algorithms use vorticity f and divergence d, defined by:
f ¼ 1
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as the prognostic variables (most convenient for spectral models). The height is also separated into a constant
mean value H and a deviation h 0 to define the mean short-scale gravity wave speed c ¼

ffiffiffiffiffiffiffi
gH

p
and a dimension-

less height anomaly ~h ¼ h0=H .
The equations, in terms of f, d and ~h are:
of
ot

þ f d ¼ �r � ðufÞ ð5Þ

od
ot

þ c2r2~h � f f ¼ �r � ðu � ruÞ ð6Þ

o~h
ot

þ d ¼ �r � ðu~hÞ ð7Þ
where f = 2X sin/ is the Coriolis frequency (cf. [12]). The velocity components are obtained from f and d by
solving Poisson equations for the stream function w and divergence potential v:
r2w ¼ f ð8Þ
r2v ¼ d ð9Þ
with
u ¼ k � rw þ rv ð10Þ
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However, either variable choice (u,v,h) or ðf; d; ~hÞ hides potential vorticity conservation. Eqs. (5) and (7) to-
gether imply
Dq
Dt

¼ oq
ot

þ u � rq ¼ 0 ð11Þ
where
q � f þ f

1 þ ~h
ð12Þ
is the potential vorticity (hereafter PV). PV is a unique variable, not only because of its material conservation,
but also because of the role it plays in ‘balance’ or ‘PV inversion’ ([4,7,10,12,14] and references).

1.3. The numerical method

A previous comparative study ([3], hereafter ‘DPM99’) demonstrated that explicit PV conservation can
greatly improve the accuracy of shallow-water simulations in the f-plane context. Here, we extend this
approach to spherical geometry. The model used here, called CA0, replaces Eq. (5) with Eq. (11), thus mak-
ing the prognostic variables ðq; d; ~hÞ. The PV is represented in a fully Lagrangian way as material contours
between which the PV is uniform and across which it jumps by a specified value Dq (see [2] for details).
This is the basis of ‘‘Contour Advection’’. Other variables are held on a grid, and evolved in a conventional
way. A common grid for spherical spectral models takes the number of points in latitude to be half the
number of points in longitude, i.e., n/ = nk/2. Here though we use a semi-spectral approach with sec-
ond-order finite differencing in latitude and Fourier series in longitude. Extra resolution is used in latitude
to compensate for the higher errors in finite differencing compared to Fourier (Legendre) series. By exper-
imentation, using n/ = nk was found to be optimal, in terms of representing the velocity field, when balanc-
ing accuracy and efficiency for flows having sharp vorticity gradients. Indeed, for a vorticity discontinuity,
one may show that the formal accuracy of the spectral approach is no greater than that for second-order
finite differences [19].

Time stepping of d and ~h makes use of the standard semi-implicit leap-frog procedure [17], with a Robert–
Asselin filter [1,18] to ensure stability. After extensive testing, we found that the filter coefficient A can be cho-
sen as small as cDt/a, where Dt is the time step and a is the Earth’s mean radius [19]. For large time steps, A is
limited to 0.2.

While not explicit in the basic equations, some kind of numerical diffusion is often added to reduce aliasing
errors and filter poorly resolved short-scale (and typically high-frequency) motions. The explicit use of PV in
CA0 permits much weaker diffusion for stability (DPM99) – much of the difficulty faced by conventional mod-
els stems from their inability to resolve sharp gradients of PV (fronts) and small-scale filamentary structures,
common features in the atmosphere and oceans. Even in contour advection, it is impossible to keep up with
this scale cascade entirely, and thin filaments are removed by ‘surgery’ (cf. [2] and references), here at a tenth
of the latitude spacing of grid points. This however results in much better material conservation of PV than is
possible in conventional methods (DPM99). For the fields d and ~h, a ‘Broutman’ spectral filter is applied to
their nonlinear tendencies (cf. [4]). This filter is applied in longitude only, and essentially removes all azimuthal
variations shorter than two grid lengths at the equator (where the upper third wavenumbers m > nk/3 are
strongly damped). The specific form used is F(m) = exp[�a(n/r)10], for m P 2, where n = (m � 2)/(M � 2),
M = nk/2 and a is chosen so that F(M) = 10�14. Wavenumbers m = 0 and 1 are not damped. Approaching
the poles, r ! 0, an increasing proportion of wavenumbers are filtered. This is consistent with the decreasing
spacing of longitudes. If one omits the r = cos/ factor, the filter is not adequate to ensure numerical stability
in polar regions.

The above, purely longitudinal filter, is often sufficient for numerical stability. But occasionally numerical
noise develops in latitude, and some damping appears to be necessary. Here, this is done by adding latitudinal
diffusion to the d and ~h tendencies (using the discrete Laplacian operator). Only a very small damping rate of
D = 0.01 per day was necessary at the equivalent maximum wavenumber in latitude. The results are insensitive
to this coefficient, as shown below.
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2. The Rossby–Haurwitz wave test

Rossby–Haurwitz waves are steadily propagating solutions of the fully nonlinear non-divergent barotropic
vorticity equation on the sphere [9]. This case is useful for testing numerical models as it can be described
exactly by analytic formulae and, although the SWEs do not have analytic solutions, a Rossby–Haurwitz ini-
tial condition is expected to evolve nearly steadily. This motivated Williamson et al. [21] to propose Rossby–
Haurwitz waves as one of seven standard test cases.

In the following, as in all previous tests, a zonal wavenumber of 4 is used. It was believed that a zonal wave-
number greater than 5 was unstable, but as recently shown in Thuburn and Li [20], this case is actually also
weakly unstable and will eventually break down once perturbed. In fact, even truncation errors cause
instability.

2.1. The initial flow

A complete description of the test case is given by Williamson et al. [21], so only a few key aspects are noted
here. The initial velocity is non-divergent (d = 0) with the streamfunction given by
Fig. 1.
�p/2 <
is the
w ¼ �a2x sin / þ a2K cos4 / sin / sin 4k ð13Þ

where a = 6.37122 · 106 m and x = K = 7.848 · 10�6 s�1.

The initial height field h is chosen to be ‘‘in balance with’’ the velocity field, by requiring the initial diver-
gence tendency to be zero (the analytical form of h is given in [21]). The minimum fluid height occurs at the
poles, where h = 8000 m, and the mean fluid height is H = 9523 m. We use a height contour interval of 120 m,
and a PV contour interval of 9.3385 · 10�6 s�1 to compare directly with Thuburn and Li [20]. The initial
height and PV fields are shown in Fig. 1.

Using a variety of numerical parameters, the CA0 model was run for 40 days. The benchmark case
employed a resolution of 128 · 128, a time step of Dt = 0.0025 of a day (a little less than half the CFL time
step DtCFL = D//c = 0.0059387, where c = 305.59 m s�1), and a latitudinal damping coefficient of D = 0.01.
The results at early times (see below) closely reproduce those found by Thuburn and Li [20] using independent
models.

2.2. Why revisit this test case?

While this test case has been carried out in many previous studies, attention has been largely focused on the
early time evolution of the height field, which exhibits little variation – see Fig. 2. Thuburn and Li [20] illus-
trate the PV as well, which is also a simple field at early times (they show day 8). They also take the test case
further in time and find that the stability of the Rossby–Haurwitz wave is sensitive to numerical error. In par-
ticular, the flow breaks down between 30 and 40 days, depending on numerical parameters and the model
employed.

Qualitatively similar behaviour is found when using the CA0 model. The flow becomes noticeably unstable
around day 30. By day 35, the PV and divergence fields have become turbulent, as exhibited in Fig. 3. PV gra-
dients sharpen into virtual discontinuities, fronts, which dominate the subsequent evolution. The divergence
Initial Rossby–Haurwitz height anomaly (left) and PV (right) fields, plotted as a function of longitude �p < k < p and latitude
/ < p/2. Positive contour levels are solid, while negative ones are dashed. Contour levels displayed are ±D/2, ±3D/2, etc., where D

contour interval.



Fig. 2. Height anomaly field at days 3, 6 and 9 (left to right): cf. Thuburn and Li [20].

Fig. 3. Height anomaly, PV and divergence fields (left to right) at day 35. The divergence contour interval is 0.001 days�1 in this and
subsequent figures.
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field becomes highly structured, only in part from gravity waves (see below). This complex late time behaviour
was not anticipated in the design of this test case, but it is in fact more characteristic of realistic atmospheric
and oceanic flows than is the simple early time behaviour.

This turbulent flow puts severe demands on the numerics, at least if one tries to maintain accuracy. Numer-
ical parameters, particularly the time step and the diffusion coefficient, need to be carefully chosen to represent
the flow – both the vortical part and the gravity wave part – as accurately as possible while keeping numerical
stability. This is a difficult balancing act, as both accuracy and stability are flow dependent.

The key point is that the test case must be sufficiently demanding for numerical methods intended for the
core of more realistic atmospheric and oceanic models (as advocated by DPM99). This means the flow should
ideally exhibit a degree of complexity comparable to that found in naturally-occurring flows, which contain
sharp PV gradients and abundant fine-scale structure. The test case must also be reproducible, i.e., (1) insen-
sitive to numerical noise and (2) convergent with increasing spatial and temporal resolution over a period of
time during which the flow changes non-trivially. These are somewhat conflicting requirements, as a more
complex flow is generally less predictable than a simple flow. As a result, few demanding and reproducible test
cases exist.1

3. Modification of the Rossby wave test

There is a simple way to modify the present test case to ensure that the test case is both demanding and
reproducible over a moderately long period of time. This is done by adding an (unbalanced) global-scale,
small-amplitude height anomaly ~h at t = 0. (In practise, this gives rise to very weak gravity waves which
are barely detectable in the subsequent flow evolution.) The disturbance takes the form (xx0 + yy0 + zz0)/
40a2, where (x,y,z) are the Cartesian coordinates of a point on the sphere, and (x0,y0,z0) is a specific point
located at latitude / = 40� and longitude k = 50�. This is simply added to the balanced field described in Sec-
tion 2.1.

Using the benchmark settings (128 · 128 resolution, Dt � 0.43521DtCFL, and a damping coefficient
D = 0.01), the flow evolution is shown in Fig. 4. Within just a few days the flow breaks down into a complex
assortment of fronts and vortices, most evident in the PV field. (The maximum Froude number juj=cð1 þ ~hÞ1=2

reaches 0.435 (the time mean is 0.35) and the minimum and maximum ‘Rossby numbers’ f/2X reach �0.80
and 0.87.) The height field distorts significantly but remains broad-scale. In particular, there is no visible trace
of gravity waves in this field.
1 Appropriate test cases – with topographic forcing – have been developed by Juckes and McIntyre [11] and Williamson et al. [21].



3.1. Numerical sensitivity

We examine next the sensitivity to the choice of numerical parameters. The effect of resolution is shown
in Fig. 5, for the height, divergence and PV fields at day 15 and at resolutions 64 · 64, 128 · 128, 256 · 256,
and 512 · 512. In each case, the time step is just under half the CFL value (so it varies with resolution), and
D = 0.01. Rapid convergence with resolution occurs, with minor differences between the highest resolution
cases (as found previously in the f-plane context in DPM99). The time-averaged r.m.s. height differences



Fig. 7.
left (whereDt= 0.00125)
between the highest resolution case and the others are 1.71%, 7.41% and 26.0%, for 256 · 256, 128 · 128
and 64 · 64, respectively (these are percentages of the r.m.s. height anomaly in the highest resolution case).
The PV differences are 3.00%, 7.87% and 19.1%. The differences diminish sharply with resolution, most
strongly for the smoother height field, as expected. The PV differences are created by advection errors, aris-
ing mainly from errors in the velocity field. Numerical convergence is less marked for the divergence field,
which exhibits errors of 16.0%, 33.6% and 60.4% (i.e., only inversely proportional to spatial resolution). The
instantaneous errors grow in time as the solutions diverge, but the dependence on resolution is similar – see
Fig. 6.

As elaborated in the following section, a significant part of this error arises from the poor numerical rep-
resentation of the underlying PV-controlled balanced motions when using ~h and d as prognostic variables (see
[13,14]). This leads to excessive noise, particularly near the poles (seen here in d at the two highest resolutions),
which can sometimes cause the model to blow up, even with larger latitudinal damping. This noise does not
develop in the more advanced model, CA1, described in the following section.

The effect of time step is shown in Fig. 7, for the height field at day 15 and for time steps Dt = 0.00125,
0.0025, 0.005, 0.01, 0.02 and 0.04 (corresponding to 0.210, 0.43521, 0.842, 1.684, 3.368 and 6.735DtCFL)
(note: Thuburn and Li [20] used Dt � 7DtCFL). The time-averaged r.m.s. height differences between the fin-
est time step case and the others (in order of increasing Dt) are 0.534%, 1.11%, 2.25%, 4.81% and 7.59%.
(The corresponding PV differences are 0.436%, 0.744%, 1.33%, 1.48% and 3.94%.) Using larger time steps
is not nearly as detrimental as using coarser spatial resolution, but errors are clearly noticeable for time
steps much is excess of tCFL. Moreover, divergence differences are much larger, coming in at 40.2%,
49.4%, 56.0%, 68.4% and 78.6% in order of increasing time step. These errors stem in part from the
semi-implicit scheme, which couples the equations for height and divergence, fields which are often very
different in character. The height field tends to be dominantly balanced and slowly evolving (like the
t
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Fig. 6. Instantaneous percentage r.m.s. error in height anomaly (left), PV (middle) and divergence (right) versus time. The errors are
computed relative to the average r.m.s. field amplitudes in the highest resolution case.

Effects of varying time step on the perturbed height anomaly field at day 15. The time step increases in factors of 2 from the upper
to the lower right (whereDt= 0.04).R.K. Smith, D.G. Dritschel / Journal of Computational Physics 217 (2006) 473–484479



Fig. 8. Effects of varying damping on the perturbed height anomaly field at day 15. Damping coefficients 0.1 and 0.01 are compared (left
and right).
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PV), while the divergence tends to contain significantly more high frequency motions, i.e., gravity waves.
Simply slowing down the waves in the semi-implicit scheme does not eliminate them – indeed they may be
more easily excited by the vortical motions. This coupling can and arguably should be avoided, as the
results of the following section demonstrate.

Finally, the damping coefficient has no perceptible impact on the solution accuracy, for 0.01 6 D 6 0.1 –
see Fig. 8. Time-averaged r.m.s. differences in ~h, d and PV are just 0.314%, 4.82% and 0.435%. Values of D

smaller than 0.01 however lead to numerical instability in some cases. Doubling the Robert–Asselin filter
coefficient results in differences of 0.258%, 8.15% and 0.286% for the three fields. As expected, the time filter
principally affects the divergence field due to the presence of gravity waves.

4. An improved numerical method

4.1. Introduction to CA1

Previous work [4,13] identified a new approach to significantly improving solution accuracy at little extra
computational cost. The CA0 model differs from conventional models principally in the way that it handles PV
conservation. Otherwise, it uses standard variables, at least for spectral models. But there is another important
aspect of PV which is not treated explicitly, namely the way in which PV controls much of the fluid motion,
through underlying ‘balance relations’ [10,12]. For example, at small Rossby and Froude numbers, geo-
strophic balance may be expected to hold everywhere except near the equator. This balance implies that
the height field is instantaneously related to the PV field (in general via an elliptic operator). Now suppose
one tried to run a shallow-water model under these conditions, with the height field as one of the prognostic
variables. Balance implies there is a direct link between height and PV at any time, but the numerics does not
see this and instead integrates the height field as an independent variable. Of course it should, one might
believe, in order to also capture gravity waves, motions not part of the balance. But the problem is that numer-
ical discretisation errors, both in space and in time, make it difficult to maintain the underlying balance, and
the errors show up erroneously as gravity waves.

A way around this problem is to use a set of prognostic variables which better distinguishes balanced
motions and gravity waves, ideally PV and a pair of ‘wave’ variables [4,13,14]. The idea is to represent the
departure from balance by these ‘wave’ variables. Then, to recover the original variables ~h, u and v, one solves
a series of elliptic problems, like in ‘PV inversion’ [12] but involving the complete set of new variables (see
below). The crucial point is that these elliptic problems reduce to balance relations when the ‘wave’ variables
are ignored. This feature leads to a significant reduction in erroneous gravity waves, and it improves the pre-
diction of the dominant balanced motions.

In reality, there is no pair of variables that represent pure gravity waves for nonlinear flows, and efficiency
considerations force a compromise. Here, we use a pair of variables that proved optimal in the f-plane context
[13], taking into account robustness, accuracy, and efficiency. One of the variables is the velocity divergence
d = $ Æ u, already used in CA0. The other is the acceleration divergence
c ¼ r � Du

Dt
¼ f f � bu � c2r2~h ð14Þ
where b = df/d/ = 2Xcos/ [5]. In the f-plane context, c/f is the ‘ageostrophic vorticity’.



R.K. Smith, D.G. Dritschel / Journal of Computational Physics 217 (2006) 473–484 481
The prognostic equations for d and c are obtained using Eqs. (5) and (7), and may be written as:
od
ot

� c ¼ �juj2 � 2
ou
o/

ou
o/

þ f

� �
þ ov

o/
ov
o/

� d

� �� �
� r � ðduÞ ð15Þ

oc
ot

� c2r2d ¼ c2r2fr � ½~hu�g þ 2X
oB
ok

� r � ðZuÞ ð16Þ
where B � c2~h þ 1
2
juj2 is the Bernoulli pressure and Z ” f(f + f). This model is referred to as CA1.

Eq. (15) is written in a non-standard way to avoid any spatial derivatives on f (which are infinite for a PV
jump) and second derivatives on u (which are also infinite for a PV jump). While these derivatives cancel math-
ematically, they do not numerically due to discretisation errors. This strategy was adopted also in the f-plane
context [3]. Finally, to avoid centred-differencing errors in latitude, the latitude derivatives in Eq. (15) are
replaced by f, d, and longitude derivatives using Eqs. (3) and (4). (Longitude derivatives are computed
spectrally.)

To evaluate the field tendencies and to advect the PV contours, the primitive variables ð~h; u; vÞ must be
recovered from the new ones (q,d,c). This ‘‘inversion’’ is done as follows. First, the divergence potential v
is recovered directly from d using Eq. (9). This then gives the divergent part of the velocity field from Eq.
(10). The non-divergent part involving w however requires f, which depends on q and ~h. So, we need ~h to pro-
ceed. An equation for ~h is available in the definition of c, which however depends on u and hence w. So, the
equations for ~h and w are coupled. But, they are both linear, given (q,d,c). In practise, the equations are solved
iteratively, rewriting Eq. (14) as
c2r2~h � f 2~h ¼ f ðf � f ~hÞ � bu � c ð17Þ

with terms on the right-hand-side evaluated using previous iterates. Numerically, these equations converge
exponentially fast, so that only a few iterations are required to achieve convergence (here when the maximum
pointwise difference between successive ~h iterates is less that 10�8).

4.2. CA1 results

First of all, no latitudinal damping was found to be necessary for CA1. Divergence fields are noticeably
smoother, not because of diffusion, but because the underlying balance is better respected.

At early time periods, the CA0 and CA1 results differ negligibly for the original Rossby–Haurwitz wave test.
But this only tests the correctness of the numerical model. To test accuracy, we need to look at how the models
deal with a complex flow having a wide range of spatial and temporal scales. We focus on the perturbed
Rossby–Haurwitz case, which destabilises quickly and reproducibly. At the benchmark resolution,
128 · 128 and Dt � 0.5DtCFL, the height and PV fields differ little between the models, see Figs. 9 and 10 which
compare the main fields given by CA0 and CA1, but the divergence field is significantly smoother in CA1.
Movies of the dynamical evolution show that the pattern of d moves with the PV, indicating that even d is
dominantly balanced in this flow. Time-averaged r.m.s. differences between the fields in the two models are
1.77%, 8.62% and 2.46%, for ~h, d and PV, respectively (these drop to 0.440%, 3.69% and 0.948% at
256 · 256 resolution). Note that the divergence difference is most significant. Convergence is faster in CA1,
as seen for instance when comparing time steps of Dt = 0.00125 and Dt = 0.0025, for which ~h, d and PV
differences are 0.413%, 21.7% and 0.349%, compared to 0.534%, 40.2% and 0.436% in CA0. Also, when com-
paring 512 · 512 and 256 · 256 resolutions, ~h, d and PV differences are 1.52%, 15.4% and 2.69% in CA1, while
they are 1.71%, 16.0% and 3.00% in CA0. This indicates that the time step is the most important factor for the
accuracy of the divergence field. This is likely due to the presence of significant gravity wave activity in d (and
in c, see below), whose higher frequency components are better resolved with a shorter time step. Such fast
motions are virtually absent in ~h and q.

The field of acceleration divergence c, never previously illustrated, is shown in Fig. 11 at times correspond-
ing to Figs. 9 and 10. This field is more highly structured than d, with many more small-scale features. Largest
values occur within strong cyclonic vortices, which tend to be more ageostrophic than anti-cyclonic vortices in
shallow-water flows [16]. Again however the pattern of c largely follows PV (not shown), indicating that c like
d is dominantly balanced. Ideally, we would like to use a better choice of ‘wave’ variables, e.g. the first time



perturbed fields at days 5, 10 and 15 (left to right). Top row: height anomaly. Middle row: divergence. Bottom row: PV.
derivatives of d and c (cf. [13,14]), but the reduced computational efficiency and the potential lack of robust-
ness for strongly ageostrophic flows indicate that it is impractical to do so. Nonetheless, CA1 does appear to
build in a degree of balance, which – perhaps surprisingly – includes equatorial regions. Overall, c and d con-
tribute little to the fluid motion, as seen for example when comparing the meridional velocity v at day 15 with
its ‘balanced’ counterpart v0 (obtained from the PV alone by imposing d = c = 0), see Fig. 12. Differences are
no more than a few percent, even at the equator. This important finding underscores the utility of this choice of
variables for modelling spherical shallow-water flows. In addition, d = c = 0 balance may prove useful for
diagnosing fluid motion near the equator, where geostrophic balance fails.
Fig. 9.CA0Fig. 10. CA1 perturbed fields at days 5, 10 and 15 (left to right). Top row: height anomaly. Middle row: divergence. Bottom row: PV.482R.K. Smith, D.G. Dritschel / Journal of Computational Physics 217 (2006) 473–484



Fig. 11. Acceleration divergence (c) at days 5, 10 and 15. Contour interval: 0.0Fig. 12. The Meridional velocityv(left), its ‘balanced’ counterpartv0(middle), an
contour intervals are 5 m s�1forvandv0, but only 0.5 m s�1forv�v0.
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5. Conclusion

We have revisited one of the standard test cases proposed for the shallow-water equations in spherical
geometry using an explicitly PV-conserving contour-advection model. Our results closely reproduce previous
results obtained with a variety of different models at early times. At late times, Thuburn and Li [20] demon-
strated that this simple test breaks down into a complex turbulent flow. This suggested a small modification of
the original test to exploit the physical instability and obtain a rapid and reproducible turbulent breakdown of
the original flow. This, we argue, is a better test for numerical methods being considered for implementation in
more realistic global atmospheric and oceanic models. The flow develops a wide range of spatial and temporal
scales, and properly challenges numerical models. This is important.

The new contour advection model introduced here copes well with this complexity by explicitly conserving
PV and preserving dynamically active sharp gradients (fronts). This is a major advantage of contour advec-
tion, and one which is not lessened when non-conservative diabatic effects are taken into account [6]. We also
found that it is important to preserve the underlying balance, the implicit control exerted by PV, in these flows.
To this end, we extended an idea, first implemented in the f-plane context, of using a new set of prognostic
variables which distinguishes balanced vortical motions and unbalanced gravity waves, at least to leading
order [13]. At little extra computational expense, this significantly improves the accuracy of the balanced part
of the flow, and in turn, the unbalanced part as well. This simple idea may be worthwhile extending to more
realistic contexts.
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